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Outlook

We will now end the analysis of the RBC model with two more
exercises. Both serve to better bridge the gap to the New Keynesian
model.

First, we will introduce money in the economy. You will see that this
changes little (or nothing).

Second, we will introduce imperfect competition in the economy.
Imperfect competition on its own will only change the steady state of
the economy. Howerver, once we make competition time-varying,
business cycle dynamics will arise.
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Extending the RBC Model

Money
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The idea

So far, we have considered the real economy, where only quantities
are determined.

We are now going to introduce money. You will see that this changes
little about real variables in the RBC model because prices are flexible.

For money to really matter for real variables, we will require some
price stickiness which will be the New Keynesian model.
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Why money exists

Money is an asset that

is a medium of exchange.
is a unit of account.
is a store of value.

The most common justification given for why we use money is that it
is easier than barter, i.e., it is liquid.

To capture this idea, we ware going to look at two theories:

money in the utility function.
a cash in advance constraint.
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The importance of money

In line with this traditional view on the role of money, we will exclusively
study its macroeconomic role through its importance for transactions of
households. However, in a modern economy, entities other than
households need liquidity:

Firms need liquidity to pay suppliers and workers.

Banks need liquidity to fulfill short-term liquidity obligations.

For some of these liquidity needs, assets with highly liquid markets have
emerged that are not considered money. For example, a bank may pay its
obligation to other banks by transferring treasury bills (not money).
Moreover, for bank stability, central bank reserves (also not money) have
become important.
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Where does money come from

Still, in a modern economy, many assets can serve as medium of exchange
or, at least, are readily convertible into money. Milton Friedman, the
founder of monetarism, suggested to use as measure M2:

physical currency in circulation

+ deposits in checking accounts (M1)

+ savings deposits

+ small-time deposits

+ money market mutual funds held by individuals.

This makes explicit that much of the money supply depends on the private
sector.
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Money and the central bank

We will not model this private/banking sector but simply assume that the
quantity of money is set exogenously by the central bank. One way to
think about it are the famous “helicopter drops”. In practice, central
banks do not change the money supply through helicopter drops. Hence,
we will briefly discuss ways that central banks change the amount of
money in the economy.
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Monetary policy tools

The central bank has, broadly speaking, three sets of instruments:

1 Open market operations.

2 Reserve requirements.

3 Interests on reserves, discount rates, and REPOs.
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Open market operations

Before the great recession, this was the primary policy tool.

These are purchases or sales of government bonds (or other assets) by
the central bank.

Several commercial banks have accounts at the central bank (part of
their reserves).

If the central bank buys bonds (not money) from those banks, it
debits those reserve accounts (also not money). Note, so far, there is
no additional money in the system.
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Open market operations II

Banks are obliged to hold a fraction of their deposits as reserves at
the central bank.

These used to pay no interest and, hence, banks had no incentives to
hold excess reserves.

Hence, when the central bank increases reserves, banks usually lend
them out to the public, thus, creating money.
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Open market operations III

How does the central bank decide on the amount of reserves?

When banks’ reserves are low, they borrow reserves from other banks
overnight.

The resulting overnight rate is called the Fed Funds Rate.

The central bank adjusts the amount of reserves by buying and selling
bonds and, thereby, changes the Fed Funds Rate.
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Reserve requirements

Central bank regulations that require banks to hold a minimum
reserve-deposit ratio.

The central bank can change these requirements and, thereby, affect
the demand for reserves.

In practice, reserve requirements are not changed frequently.
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Central banks since the Great Recession

During the Great Recession, central banks increased reserves so much
that all banks had excess reserves.

The Fed Funds rate became zero.

In the aftermath, instead of reducing reserves, many central banks
moved to a new operating system where banks hold systematically
excessive reserves, a corridor system.
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Interest rate on reserves

To manage the demand for reserves, central banks have started to
pay interest on reserves.

When the interest rate increases, banks find it more profitable to use
their funds to hold reserves (not money) instead of lending to the
public (money).

The central bank is free to choose any interest rate.

The ECB even had a negative interest rate for some time.
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Reverse repurchase agreements (RREPOs)

Non commercial banks participating in the Fed Funds market do not
earn interest on reserves.

As a result, they are willing to lend money below the interest rate on
reserves.

As a response, central banks created standing RREPO facilities.

Here, the central bank offers bonds for reserves at an interest rate it
determines.
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Discount rate

The central bank also directly lends money to banks through the so
called discount window.

These can also be long-term loans as the ECB has done.

Again, the central bank is free to choose the interest rate. The ECB
has also used negative interest rates.

However, the interest rate is naturally above the interest rate on
reserves.
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Repurchase agreements (REPOs)

There is a lot of stigma associated with borrowing at the discount
rate leading to banks unwilling to do so.

As a result, trades occurs above the targeted rate.

As a response, central banks created standing REPO facilities.

Here, the central bank offers reserves for bonds at an interest rate it
determines.
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Modeling a process of money

We assume that money growth follows a stochastic AR(1) process.
We will discuss in later lectures how to think about the shocks ϵmt .
For now, think about the money supply being determined only by the
central bank, and it sometimes prints more and sometimes prints less
new money.

We allow for a constant average money supply growth rate. You will
see that this will give us inflation.

lnMt+1 − lnMt = (1− ρm)m
ss + ρm(lnMt − lnMt−1) + ϵmt . (1)
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Rewriting the process

As the level of the money supply is changing over time, the process is not
stationary. It will turn out that real money balances, Mt+1/Pt , where Pt is
the price level, are stationary. Hence, we rewrite the process in terms of
real money balances:

lnMt+1 − lnMt = (1− ρm)m
ss + ρm(lnMt − lnMt−1) + ϵmt (2)

lnMt+1 − lnPt + lnPt − lnPt−1 − lnMt + lnPt−1 =

(1−ρm)mss+ρm(lnMt−lnPt−1+lnPt−1−lnPt−2−lnMt−1+lnPt−2)+ϵ
m
t

(3)

∆ lnmt+1 + πt = (1− ρm)m
ss + ρm(∆ lnmt + πt−1) + ϵmt , (4)

where mt = Mt+1/Pt and πt is the inflation rate.
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Households

Households receive factor payments in nominal terms.

Households trade a nominal bond with each other that pays a
pre-determined nominal interest of it−1. We will see that this is
equivalent to firms issuing these bonds.

They enter the period with a stock of money Mt and decide that
period about the stock of money to carry over to the next period
Mt+1.

They pay real lump-sum taxes Tt . You will see that we need these.
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The budget constraint with money

PtCt + PtKt+1 + Bt+1 +Mt+1 −Mt

= WtHt + RtKt + (1 + it−1)Bt + PtΠt − PtTt + (1− δ)KtPt . (5)

Note, Wt and Rt are now the nominal variables. Let us rewrite the
constrained in real terms:

Ct + Kt+1 +
Bt+1

Pt
+

Mt+1 −Mt

Pt

=
Wt

Pt
Ht +

Rt

Pt
Kt + (1 + it−1)

Bt

Pt
+Πt − Tt + (1− δ)Kt . (6)
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Money in the utility function

We require some mechanism why people wish to hold money instead
of bonds.

We start by assuming that households derive utility from holding real
money balances:

Ut =
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η
+ φ ln

(
Mt+1

Pt

)
. (7)

Mt+1 are the today determined money balances carried over to the
next period.

The idea is that real money balances allow households to avoid barter.
The more money they hold, the less time consuming is shopping.

This is a very crude way to model money demand as the demand does
not depend on the level of consumption.
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The household problem

max
Ct ,Kt+1,Ht ,Bt+1,Mt+1

E0

{ ∞∑
t=0

βt

(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η
+ φ ln

(
Mt+1

Pt

))}
(8)

s.t.

Ct + Kt+1 +
Bt+1

Pt
+

Mt+1 −Mt

Pt

=
Wt

Pt
Ht +

Rt

Pt
Kt + (1 + it−1)

Bt

Pt
+Πt − Tt + (1− δ)Kt . (9)

lnMt+1 − lnMt = (1− ρm)m
ss + ρm(lnMt − lnMt−1) + ϵmt . (10)
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First order conditions

Λt = E0

{ ∞∑
t=0

βt
[C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η
+ φ ln

(
Mt+1

Pt

)
− λt

(
Ct + Kt+1 +

Bt+1

Pt
+

Mt+1 −Mt

Pt
− Wt

Pt
Ht −

Rt

Pt
Kt

− (1 + it−1)
Bt

Pt
− Πt + Tt − (1− δ)Kt

)]}
. (11)

∂Λt

∂Ht
: ϕHη

t = λt
Wt

Pt
(12)

∂Λt

∂Ct
: C−γ

t = λt (13)

∂Λt

∂Kt+1
: βtλt = Et

{
βt+1λt+1

(
Rt+1

Pt+1
+ (1− δ)

)}
(14)
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First order conditions II

Λt = E0

{ ∞∑
t=0

βt
[C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η
+ φ ln

(
Mt+1

Pt

)
− λt

(
Ct + Kt+1 +

Bt+1

Pt
+

Mt+1 −Mt

Pt
− Wt

Pt
Ht −

Rt

Pt
Kt

− (1 + it−1)
Bt

Pt
− Πt + Tt − (1− δ)Kt

)]}
. (15)

∂Λt

∂Bt+1
: βtλt = Et

{
βt+1λt+1(1 + it)

Pt

Pt+1

}
(16)

∂Λt

∂Mt+1
: βt

φ

Pt

(
Mt+1

Pt

)−1

+ βt+1Et
λt+1

Pt+1
= βt

λt
Pt

(17)
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Combining terms

Hours optimality:

ϕHη
t = C−γ

t
Wt

Pt
(18)

Euler equation:

C−γ
t = βEt

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
(19)

Bond optimality:

C−γ
t = βEt

{
C−γ
t+1

1 + it
1 + πt+1

}
(20)

Money optimality:

C−γ
t = φ

(
Mt+1

Pt

)−1

+ βEt

{
C−γ
t+1(1 + πt+1)

−1
}

(21)
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Preview of the New Keynesian mechanism

One key ingredient for output fluctuations in the New Keynesian
model will be shocks to the nominal interest rate and price
expectations.

The intuition for this can be seen already in this model using the
bond equation.

However, we will also see that the mechanism is not operational in
this model because of fully flexible prices.
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Log-linearizing bond optimality

To understand the mechanism, assume πss = 0 such that
i ss = 1

β − 1 ≈ − ln(β) and log-linearize:

(1− γĈt) = βEt

{
(1− γĈt+1)(1 + it)(1 + πt+1)

−1
}

(22)

− γĈt = ln(β)− γEt Ĉt+1 + it − Etπt+1 (23)

Et Ĉt+1 − Ĉt =
1

γ
[−Etπt+1 + it + ln(β)] (24)

Expected consumption growth is small when the cost of consumption
today is low relative to the expected cost of consumption tomorrow.

Consumption growth is small when the nominal interest rate is low.
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Preview of the New Keynesian mechanism

Et Ĉt+1 − Ĉt =
1

γ
[−Etπt+1 + it + ln(β)] (25)

These insights will be key when introducing a central bank that can affect
interest rates and future price expectations. If the central bank raises the
expected costs of consumption tomorrow, it will create consumption
today! Similarly, if it decreases the interest rate, it will increase
consumption today.
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The Fisher equation

However, in our model, consumption growth will be independent of
changes in prices or the nominal interest rate. To see this, combine the
Euler equation and the bond equation:

C−γ
t = βEt

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
(26)

C−γ
t = βEt

{
C−γ
t+1(1 + it)(1 + πt+1)

−1
}
. (27)

Hence,

Et

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
= Et

{
C−γ
t+1

1 + it
1 + πt+1

}
. (28)
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The Fisher equation II

Et

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
= Et

{
C−γ
t+1

1 + it
1 + πt+1

}
. (29)

This is called the Fisher equation. It states that the real return on capital
is linked to the nominal return on bonds and inflation. When inflation is
high, nominal interest rates need to be high. Hence, with flexible prices, all
changes in the nominal interest rate are offset by changes in the inflation
rate leading to no independent fluctuations in either. To break this logic,
i.e., have fluctuations in the real interest rate, we require price stickiness.
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Comparing money and bond optimality

C−γ
t = βEt

{
C−γ
t+1(1 + it)(1 + πt+1)

−1
}

(30)

C−γ
t = φ

(
Mt+1

Pt

)−1

+ βEt

{
C−γ
t+1(1 + πt+1)

−1
}
. (31)

Combining the two equations yields:

C−γ
t = φ

(
Mt+1

Pt

)−1

+
C−γ
t

(1 + it)
(32)

φ

(
Mt+1

Pt

)−1

= C−γ
t

[
1− 1

1 + it

]
(33)

Note, bonds, other than money, pay an interest rate. Households hold
money until the marginal utility of holding money compensates them for
the forgone interest rate.
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Money demand equations

We can solve now for the demand of real money balances:

C−γ
t

[
1− 1

1 + it

]
= φ

(
Mt+1

Pt

)−1

(34)

φ

(
Mt+1

Pt

)−1

= C−γ
t

it
1 + it

(35)

Mt+1

Pt
= mt = φCγt

(
1 + it
it

)
(36)

Real money demand depends positively on the level of consumption and
negatively on the nominal interest rate.
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Firm behavior

The firm maximizes

max
Kt ,Ht

E0

{ ∞∑
t=0

βt
C−γ
t

C−γ
0

[
PtK

α
t (AtHt)

1−α −WtHt − RtKt

]}
(37)

with
lnAt+1 = ρ lnAt + ϵt+1 (38)
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Firm optimality

The first order conditions are given by

Rt

Pt
= αKα−1

t (AtHt)
1−α (39)

Wt

Pt
= (1− α)Kα

t A
1−α
t H−α

t (40)

which is exactly the same as before. Moreover, as firms operate under
perfect competition, profits are zero, Πt = 0.
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Equilibrium

We are now going to derive several properties of the equilibrium
with money:

1 We will derive the long run-inflation rate.

2 We derive the equilibrium in the bonds market.

3 We derive the equilibrium level of taxes.

4 We use these properties to simplify the household’s budget constraint.
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Steady state inflation

Given the money demand equation:

Mt+1

Pt
= φCγt

(
1 + it
it

)
, (41)

we can directly compute the steady state inflation rate. In steady state, Ct

and it are constant. Hence, real money balances, Mt+1

Pt
, must be constant.

This is only possible when the growth rate of the price level equals the
growth rate of the money supply: πss = mss .
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Bond market equilibrium

The household trades bonds only with itself.

As a result, Bt = 0 in all t.

Remember, this is also an equilibrium when bonds are issued by firms.
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Equilibrium taxation

We will assume that government spending is zero and that the budget
balances each period by adjusting the lump-sum tax. The government
earns revenues by printing money with which it could buy real resources.
Hence, the budget constraint reads

Mt+1 −Mt

Pt
+ Tt = 0 (42)

from which directly follows that

Tt = −Mt+1 −Mt

Pt
, (43)

i.e., the government distributes its seigniorage revenues back to the
household.
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Equilibrium budget constraint

Using the bond market equilibrium and equilibrium taxation, the
household’s budget constraint simplifies to

Ct + Kt+1 =
Wt

Pt
Ht +

Rt

Pt
Kt +Πt + (1− δ)Kt . (44)

Finally, using the firm optimality we have

Ct + Kt+1 = Yt + (1− δ)Kt , (45)

i.e., all output is either consumed or invested.
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Equilibrium

We can divide the economy into a real side and a nominal side.

The real side determines quantities and real prices.

The nominal side determines the price level and nominal variables.

This implies that money has no effect on real quantities.

This is called the classical dichotomy.
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Equilibrium, the real side

Given the states At and Kt , the following set of equations determine all
real variables over time.

Yt = Kα
t (AtHt)

1−α (46)

Ct + Kt+1 = Yt + (1− δ)Kt (47)

Rt

Pt
= αKα−1

t (AtHt)
1−α (48)

Wt

Pt
= (1− α)Kα

t A
1−α
t H−α

t (49)

ϕHη
t = C−γ

t
Wt

Pt
(50)

C−γ
t = βEt

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
(51)

lnAt+1 = ρ lnAt + ϵt+1 (52)

Felix Wellschmied (UC3M) Extending RBC 43 / 103



Equilibrium, the nominal side

Take the nominal interest rate as given (more on this in a second), the
price level (inflation) adjusts such that real money supply facilitates the
level of consumption:

mt = φCγt

(
1 + it
it

)
. (53)

Given πt , the money growth rule determines the resulting future real
money supply ∆ lnmt+1:

∆ lnmt+1 + πt = (1− ρm)m
ss + ρm(∆ lnmt + πt−1) + ϵmt . (54)

Finally, the Fisher equation determines the nominal interest rate:

Et

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
= Et

{
C−γ
t+1

1 + it
1 + πt+1

}
. (55)
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Calibration

We are going to use the same calibration as before with an inverse
labor supply elasticity η = 0.5.

We will look at the non-inflationary steady-state, mss = 0.

For the moment, I am interest in qualitative results. Hence, I simply
set ρm = 0, i.e., money is a random walk. I match the HP-filtered
standard deviation of CPI inflation (0.006) with σm = 0.0022.

The parameter of the utility of money, φ, matter for the level of
money demand which is unimportant for its dynamics. We will set
φ = 1.
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Qualitative assessment

We have seen that the real side of the economy is unchanged.

Hence, we are only going to consider what happens to nominal values.

We start by asking what happens after a positive productivity shock.

Afterward, we consider an increase in the money growth rate.

Felix Wellschmied (UC3M) Extending RBC 46 / 103



Productivity shocks and the nominal side

We know that after an increase in productivity, real consumption increases.
Consider the money demand equation:

mt = φCγt

(
1 + it
it

)
. (56)

To facilitate the consumption increase, real money balances, mt , need to
increase. Because Mt is given, prices decrease, i.e., πt needs to be
negative.
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Productivity shocks and the nominal side II

Next, consider the Fisher equation:

Et

{
C−γ
t+1

(
Rt+1

Pt+1
+ (1− δ)

)}
= Et

{
C−γ
t+1

1 + it
1 + πt+1

}
. (57)

We know that the real interest rate increases after an increase in
productivity. Moreover, as consumption is increasing over time, πt+1 must
be decreasing. Hence, it , in general, can either increase or decrease. It
turns out, with a random walk in money, the nominal interest rate does
not move at all. One can see that from combining (16) and (17). First,
we can write the latter as:

λt
Pt

=
φ

Mt+1
+ βEt

λt+1

Pt+1
(58)

λt
Pt

=
∞∑
s=0

βs
φ

Mt+1+s
(59)
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Productivity shocks and the nominal side III

λt
Pt

=
∞∑
s=0

βs
φ

Mt+1+s
(60)

However, Mt+1+s is constant. Therefore, λtPt
and λt+1

Pt+1
must also remain

constant. However, from (16):

λt
Pt

= Et

{
β
λt+1

Pt+1
(1 + it)

}
(61)

it follows that it must remain constant.
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Impulse response functions
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Remember that money is neutral for real variables.

Hence, the model implies that inflation is countercyclical,
CORR(Yt , πt) = −0.47.

This is counterfactual. In the data, inflation is procyclical,
CORR(Yt , πt) = 0.32.

We will see how the New Keynesian model fixes this implication. Key
will be that output will increase in response to an inflationary shock,
i.e., money will no longer be neutral.
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Money shocks and the nominal side

Now consider an increase in the money supply growth rate. The real
money supply growth is

∆ lnmt+1 + πt = (1− ρm)m
ss + ρm(∆ lnmt + πt−1) + ϵmt (62)

One can show that it is again a constant. As consumption is unchanged in
all periods, and

mt = φCγt

(
1 + it
it

)
, (63)

it must be that real money is unchanged in all periods, ∆ lnmt+1 = 0.
Hence, πt = ϵmt . As money growth is a random walk and money growth
fully adjusts in the first period, it directly follows that πt+1 = 0, i.e.,
inflation is very short-lived.
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Impulse response functions
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Money neither affects real quantities nor the real money supply.

Resulting from the random walk in the money supply, inflation lasts
only one period.

Changes in money affect only the price level as in the quantity theory
of money.
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The long run optimal inflation rate

Though the money supply does not affect real quantities, it can affect
welfare. To see this, consider the money demand function

mt = φCγt
1 + it
it

. (64)

Higher inflation does not affect Ct but it increases it which decreases mt .

In our model, a higher mt makes people happy by making their lives easier,
hence, we want to decrease it . The lowest feasible interest rate is it = 0
when the marginal utility of holding money becomes zero:

φ

(
Mt+1

Pt

)−1

= C−γ
t

[
1− 1

1 + it

]
. (65)
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The long run optimal inflation rate II

Now consider the Fisher equation in steady state with i ss = 0:(
R

P

)ss

+ (1− δ) =
1

1 + πss
(66)

πss =
1(

R
P

)ss
+ (1− δ)

− 1 ≤ 0, (67)

i.e., the optimum inflation in the long run is negative. This is called the
Friedman rule after Milton Friedman who has obtained the Nobel price for
his research on monetary economics. The intuition is: The nominal
interest rate is a tax on holding money. Setting the nominal interest rate
to zero avoids this distortionary tax. Note, Europe has had (involuntarily)
in 2009-2021 a monetary policy almost consistent with the Friedman rule.
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Cash in advance constraint

This far, we have rationalized money holdings by households deriving
explicit utility from it.

We are now going to consider an alternative foundation: Households
need to hold money to make nominal purchases.

That is, households have to satisfy an additional constraint:

Mt ≥ PtCt
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The household problem

max
Ct ,Kt+1,Ht ,Bt+1,Mt+1

E0

{ ∞∑
t=0

βt

(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η

)}
(68)

s.t.

Ct + Kt+1 +
Bt+1

Pt
+

Mt+1 −Mt

Pt

=
Wt

Pt
Ht +

Rt

Pt
Kt + (1 + it−1)

Bt

Pt
+Πt − Tt + (1− δ)Kt . (69)

Mt

Pt
≥ Ct (70)

lnMt+1 − lnMt = (1− ρm)m
ss + ρm(lnMt − lnMt−1) + ϵmt . (71)
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First order conditions

Λt = E0

{ ∞∑
t=0

βt
[C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η

− λt

(
Ct + Kt+1 +

Bt+1

Pt
+

Mt+1 −Mt

Pt
− Wt

Pt
Ht −

Rt

Pt
Kt

− (1 + it−1)
Bt

Pt
− Πt + Tt − (1− δ)Kt

)
− µt

(
Ct −

Mt

Pt

)]}
. (72)

∂Λt

∂Ht
: ϕHη

t = λt
Wt

Pt
(73)

∂Λt

∂Ct
: C−γ

t − µt = λt (74)

∂Λt

∂Kt+1
: βtλt = βt+1Et

{
λt+1

(
Rt+1

Pt+1
+ (1− δ)

)}
(75)
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First order conditions II

Λt = E0

{ ∞∑
t=0

βt
[C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η

− λt

(
Ct + Kt+1 +

Bt+1

Pt
+

Mt+1 −Mt

Pt
− Wt

Pt
Ht −

Rt

Pt
Kt

− (1 + it−1)
Bt

Pt
− Πt + Tt − (1− δ)Kt

)
− µt

(
Ct −

Mt

Pt

)]}
. (76)

∂Λt

∂Bt+1
: βtλt = βt+1Et

{
λt+1(1 + it)

Pt

Pt+1

}
(77)

∂Λt

∂Mt+1
: βt

λt
Pt

= βt+1Et

(
λt+1

Pt+1
+
µt+1

Pt+1

)
(78)
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Optimal consumption

Optimal consumption:
C−γ
t = λt + µt (79)

The marginal utility of consumption needs to be equal the shadow price of
having one less unit in the budget constrained and tightening the cash in
advance constrained by one unit.
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The Euler equation

The Euler equation becomes:

C−γ
t − µt = βEt

{
[C−γ

t+1 − µt+1]

(
Rt+1

Pt+1
+ (1− δ)

)}
(80)

The marginal benefit of consuming today (the MUC minus the costs of
tightening the cash constraint) must equal the expected marginal benefits
of saving (the expectations over the MUC tomorrow minus the tightening
of the constraint tomorrow times the returns on savings).
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Money optimality

C−γ
t − µt
Pt

= βEt

(
C−γ
t+1 − µt+1

Pt+1
+
µt+1

Pt+1

)
(81)

C−γ
t = µt + βEt

C−γ
t+1

1 + πt+1
. (82)

By forgoing one unit of consumption today and investing the resources in
money, the household obtains a relaxed cash in advance constrained and
one expected real unit of consumption tomorrow. Importantly, it does not
earn any returns.
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Bond optimality

Finally, lets substitute the Lagrange multiplier in the bond equation:

C−γ
t − µt = βEt

{
[C−γ

t+1 − µt+1]
(1 + it)

1 + πt+1

}
(83)
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Properties of the equilibrium

We will derive now that

in any equilibrium with a positive interest rate on bonds, the
constraint on money balances must be binding.

money is no longer neutral in the short run.
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Properties of the constraint

Compare the bond and money optimality:

λt
Pt

= βEt

{
λt+1

(1 + it)

Pt+1

}
(84)

λt
Pt

= βEt

{
λt+1

Pt+1
+
µt+1

Pt+1

}
. (85)

Suppose the cash in advance constraint is not binding, i.e., µt = µt+1 = 0.
In that case, the nominal interest rate must be zero. Put differently, when
money has no value, households are only willing to hold it when bonds pay
no return. For any equilibrium with a positive interest rate, the constraint
must be binding, i.e., Mt

Pt
= mt = Ct
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Non-neutrality of money

Note, the Euler equation depends on the multiplier of the cash in
advance constraint.

Hence, it depends on money.

Hence, other than with money in the utility function, money is no
longer neutral.
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Non-neutrality of money II

C−γ
t − µt = βEt

{
[C−γ

t+1 − µt+1]

(
Rt+1

Pt+1
+ (1− δ)

)}
(86)

When the constraint today is particularly binding relative to the expected
constraint tomorrow, µt >> Etµt+1, the marginal utility of consumption
today needs to be relatively large. That is, the household reduces its
consumption today.
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Equilibrium, the real side

Except for the Euler equation, this is exactly the same as before:

Yt = Kα
t (AtHt)

1−α (87)

Ct + Kt+1 = Yt + (1− δ)Kt (88)

Rt

Pt
= αKα−1

t (AtHt)
1−α (89)

Wt

Pt
= (1− α)Kα

t A
1−α
t H−α

t (90)

ϕHη
t = C−γ

t
Wt

Pt
(91)

lnAt+1 = ρ lnAt + ϵt+1 (92)

C−γ
t − µt = βEt

{
[C−γ

t+1 − µt+1]

(
Rt+1

Pt+1
+ (1− δ)

)}
(93)
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Equilibrium, the nominal side

Using the cash in advanced constraint, we know real money balances:

mt = Ct . (94)

Given ∆ lnmt+1, the money growth rule determines the resulting inflation:

∆ lnmt+1 + πt = (1− ρm)m
ss + ρm(∆ lnmt + πt−1) + ϵmt . (95)

Using the money optimality, we obtain the multiplier:

µt = C−γ
t − βEt

C−γ
t+1

1 + πt+1
. (96)

Using the bond optimality, we obtain the nominal interest rate:

C−γ
t − µt = βEt

{
[C−γ

t+1 − µt+1]
(1 + it)

1 + πt+1

}
(97)
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Impulse response functions
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As before, a productivity shock decreases prices and, hence, increases
real money balances.

The increase in consumption makes the cash in advance constraint
tighter.

As the value of money increases, the return on bonds needs to
increase.
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Impulse response functions II
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The money supply growth shock increases inflation.

As a result, the nominal interest rate increases and real money
balances fall.

As a result, the cash in advance constraint becomes tighter.

Recall that mt = Ct , i.e., consumption also falls. As holding money
becomes more expensive, workers decide to consume less.
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The long run optimal inflation rate

The household would prefer not to face a binding cash in advance
constraint.

We have seen that this is only consistent with i ss = 0.

Which is again the Friedman rule.
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Extending the RBC Model

Mark-up shocks
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The idea

Source: Nekarda and Ramey, 2020

So far, we assume perfect competition in the goods market.

We are now going to introduce imperfect competition.

Imperfect competition reduces the level of output as firms reduce
output to increase profits.

If market power is cyclical, this may introduce business cycle
fluctuations.
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The set-up

For simplicity, we will assume labor is the only factor of production.

Households trade again a nominal bond with each other.

Otherwise, we will not change anything at the household side.

It is convenient to split the production side into two entities:
1 There is a unit mass of intermediate goods producers which produce a

differentiable good using labor.
2 There is a final goods producer which simply bundles these

intermediate goods into a final output good.
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The household problem

max
Ct ,Bt+1,Ht

E0

{ ∞∑
t=0

βt

(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η

)}
(98)

s.t.

PtCt + Bt+1 = WtHt +Πt + (1 + it−1)Bt , (99)

where Pt is the price of the consumption good, Πt are the profits from the
intermediate goods producers, and it is the nominal interest rate.
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First order conditions

Λt = E0

{ ∞∑
t=0

βt
[C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η

− λt [PtCt + Bt+1 −WtHt − Πt − (1 + it−1)Bt ]
]}
. (100)

∂Λt

∂Ct
: C−γ

t = λtPt (101)

∂Λt

∂Bt+1
: βtλt = βt+1Etλt+1(1 + it) (102)

∂Λt

∂Ht
: ϕHη

t = λtWt (103)
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Household optimality

Combining terms gives us the Euler equation and the optimal hours
condition:

C−γ
t = β(1 + it)Et

{
C−γ
t+1

Pt

Pt+1

}
(104)

ϕHη
t = C−γ

t
Wt

Pt
. (105)
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Final goods producer

The final goods producer uses all available intermediate input goods yj ,t
and bundles them to the (real) final output good using as production
technology:

Yt =

(∫ 1

0
y

µ(t)−1
µ(t)

j ,t dj

) µ(t)
µ(t)−1

. (106)

µ(t) is the substitution elasticity between intermediate input goods j .

As intermediate input goods are imperfect substitutes, intermediate
goods producers will have market power.

As µ(t) → ∞ goods become perfect substitutes (perfect
competition).
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Optimal input usage

To reduce notation, I will omit the dependence of µ on t:

Yt =

(∫ 1

0
y

µ−1
µ

j ,t dj

) µ
µ−1

. (107)

The production function is such that aggregate output is highest when all
intermediate inputs are used in the same proportion. To see this, assume
they are not and ln yj ,t ∼ N(ln ȳ , σ2y ). Remember,

Exa = exp(x̄)a exp(0.5σ2x)
a2 when x is log-normally distributed. Hence,

Yt =
(
ȳ

µ−1
µ exp(0.5σ2y )

(µ−1
µ

)2
) µ

µ−1
(108)

Yt =
(
ȳ exp(0.5σ2y )

)
exp(0.5σ2y )

−1/µ. (109)

The first term is simply the mean of the log-normal distribution. The
second term is decreasing in the variance of the usage of idiosyncratic
quantities.
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Optimization

The final goods producer takes the intermediate goods prices, pj ,t , as given
and sells the final good at price Pt . It chooses inputs to maximize profits:

max
yj,t

{
Pt

(∫ 1

0
y

µ−1
µ

j ,t dj

) µ
µ−1

−
∫ 1

0
pj ,tyj ,tdj

}
. (110)

Optimality implies ∂Πt
∂yj,t

= 0:

Pt
µ− 1

µ
y

µ−1
µ

−1

j ,t

µ

µ− 1

(∫ 1

0
y

µ−1
µ

j ,t dj

) µ
µ−1

−1

= pj ,t . (111)
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Optimization II

Pty
−1
µ

j ,t

(∫ 1

0
y

µ−1
µ

j ,t dj

) 1
µ−1

= pj ,t (112)

yj ,t =

(
pj ,t
Pt

)−µ(∫ 1

0
y

µ−1
µ

j ,t dj

) µ
µ−1

(113)

Plugging in the production function yields:

yj ,t =

(
pj ,t
Pt

)−µ
Yt . (114)

The demand for an intermediate input good depends positively on
aggregate output and negatively on the price of the intermediate input
good relative to the aggregate price. The slope of the demand curve in
logs is −µ.
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The price of the final output good

The final goods producer operates under perfect competition and, hence,
makes zero profit:

PtYt︸︷︷︸
Revenues

−
∫ 1

0
pj ,tyj ,tdj︸ ︷︷ ︸

Input costs

= 0. (115)

Plugging in (114) yields:

PtYt =

∫ 1

0
p1−µj ,t Pµt Ytdj (116)

Which yields the aggregate price index:

Pt =

(∫ 1

0
p1−µj ,t dj

) 1
1−µ

. (117)
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Intermediate goods producers

The intermediate goods producers maximize discounted profits:

πj ,t = pj ,tyj ,t −Wthj ,t , (118)

where

yj ,t = Athj ,t (119)

pj ,t =

(
yj ,t
Yt

) 1
−µ

Pt . (120)
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Firm optimization

Substituting in for the demand function and production function yields the
following decision problem:

max
yj,t

E0

{ ∞∑
t=0

βt
C−γ
t

C−γ
0

[(
yj ,t
Yt

)− 1
µ

Ptyj ,t −
Wt

At
yj ,t

]}
(121)

First order condition:(
yj ,t
Yt

)− 1
µ

Pt −
1

µ

(
yj ,t
Yt

)− 1
µ
−1

Pt
yj ,t
Yt

=
Wt

At
(122)(

yj ,t
Yt

)− 1
µ

Pt

[
1− 1

µ

]
=

Wt

At
(123)

pj ,t =
µ

µ− 1

Wt

At
. (124)

Felix Wellschmied (UC3M) Extending RBC 84 / 103



Firm optimization II

pj ,t =
µ

µ− 1

Wt

At
. (125)

All firms set the same price and charge a mark-up, ψ(t) = µ(t)
µ(t)−1 ,

over marginal costs.

As a result, they make a profit:

πj ,t = yj ,t

[
µ(t)

µ(t)− 1

Wt

At
− Wt

At

]
= hj ,tWt

1

µ(t)− 1
. (126)
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Deriving aggregates

We are now going to use the firm optimality and aggregate these to
derive:

aggregate prices.

real wages.

aggregate profits.

aggregate output.
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Aggregate prices

Combining the aggregate price index,

Pt =

(∫ 1

0
p1−µj ,t dj

) 1
1−µ

,

with (125) yields

Pt =

(∫ 1

0

(
ψ(t)

Wt

At

)1−µ
dj

) 1
1−µ

(127)

= ψ(t)
Wt

At
. (128)

because for a constant a, we have
∫ 1
0 a = a.

Felix Wellschmied (UC3M) Extending RBC 87 / 103



Real wages

This implies for real wages

Wt

Pt
=

At

ψ(t)
. (129)

Workers are paid their marginal product divided by the mark-up that firms
charge.
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Aggregate profits

Aggregate profits are:

Πt =

∫ 1

0
πj ,tdj = HtWt

1

µ(t)− 1
. (130)

Profits are simply a constant fraction of the wage bill.
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Aggregate output

Aggregate output is given by:

Yt =

(∫ 1

0
y

µ−1
µ

j ,t dj

) µ
µ−1

. (131)

As all intermediate good producers charge the same price, they have the
same output, and we have

Yt =

∫ 1

0
yj ,tdj =

∫ 1

0
Athj ,tdj = AtHt . (132)

Felix Wellschmied (UC3M) Extending RBC 90 / 103



Household budget constraint

Finally, we can simplify the household’s budget constraint. In equilibrium,
bonds need to be in zero net supply: Bt = Bt+1 = 0.

PtCt = WtHt +Πt = WtHtψ(t). (133)

Substituting for the real wage gives us

Ct =
At

ψ(t)
Htψ(t) = Yt , (134)

i.e., all output is consumed.
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Solution

So far, we have the following set of equations:

C−γ
t = βEt

{
C−γ
t+1

1 + it
1 + πt+1

}
(135)

ϕHη
t = C−γ

t
Wt

Pt
(136)

Wt

Pt
=

At

ψ(t)
(137)

Ct = Yt (138)

Yt = AtHt (139)

lnAt+1 = ρ lnAt + ϵt+1. (140)

We cannot pin down the expected inflation rate AND the interest rate.
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Solution II

To close the model, we simply assume an exogenous process for the
nominal interest rate. It fluctuates around its steady state (assuming
πss = 0) but reacts to changes in inflation. Later in the course, we will see
that such an interest rate rule is linked to central banks behavior:

it =
1

β
− 1 + κππt + ϵit . (141)

Moreover, we introduce shocks to mark-ups. Those follow an AR(1)
process in logs around their log steady state:

lnψt+1 = (1− ρψ) ln

(
µ̄

µ̄− 1

)
+ ρψ lnψt + ϵψt+1 (142)
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Calibration

We are going to use the same calibration as before with an inverse
labor supply elasticity η = 0.5 This leads to ϕ = 13 to match
Hss = 0.33.

I set κπ = 1.5, more on that later in the course.

Changes in mark-ups lead to changes in real wages and, hence, hours.
ρψ = 0.5 matches the autoccorelation of hours.

Finally, I use σi to match the standard deviation of inflation and set
σψ = 0.05 which is arbitrary.
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A productivity shock

We can see directly that real wages increase:

Wt

Pt
=

At

ψt
. (143)

Combine the budget constraint, (134), with the optimal hours decisions,
(105), to get

ϕHη+γ
t =

A1−γ
t

ψt
(144)

Ht =

(
1

ϕψt

) 1
η+γ

A
1−γ
η+γ
t . (145)

In a model without capital, households do not defer consumption to build
up capital. Hence, the wealth effect dominates the substitution effect, and
hours decrease after an increase in productivity.
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A productivity shock II

Substituting the optimal hours into the production function yields

Yt =

(
1

ϕψt

) 1
η+γ

A
1+η
η+γ
t (146)

Output increases today. Hence, consumption (output) today is higher than
in the future. Hence, the bond equation tells us that the real interest rate,
it − πt , must fall:

C−γ
t = βEt

{
C−γ
t+1

1 + it
1 + πt+1

}
. (147)
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A productivity shock III
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This implies that hours may be countercyclical.

It implies the real interest rate may be countercyclical.
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A mark-up shock

We can see directly that real wages will decrease:

Wt

Pt
=

At

ψ
.

This reduces the incentives to work so hours decline:

Ht =

(
1

ϕψt

) 1
η+γ

A
1−γ
η+γ
t .

A decrease in hours will decrease output and consumption by the same
amount:

Yt = Yt =

(
1

ϕψt

) 1
η+γ

A
1+η
η+γ
t = Ct .

As consumption growth will be positive, the real interest rate needs to
increase:

C−γ
t = βEt

{
C−γ
t+1

1 + it
1 + πt+1

}
.
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A mark-up shock II
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This implies that hours may be procyclical. Its cyclicality will depend
on the relative importance of productivity and mark-up shocks.

It implies the real interest rate will be countercyclical.
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Comparing models and data

Y C H TFP w r

Data
Std. % 1.61 1.25 1.9 1.25 0.96 1.02

σi = σl = 0
Std. % 1.56 0.45 0.52 1.24 1.10 0.06

σi = 0.004;σl = 0.0005
Std. % 0.74 0.74 0.5 1.24 1.24 0.27
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Correlations

Y C H TFP w r
Data

Y 1
C 0.78 1
H 0.87 0.68 1
TFP 0.79 0.71 0.49 1
w 0.12 0.29 -0.06 0.34 1
r 0.24 0.12 0.40 0.05 -0.13 1

σi = 0.004;σl = 0.0005
Y 1
C 1 1
H -1 -1 1
TFP 1 1 -1 1
w 1 1 -1 1 1
r -0.26 -0.26 0.26 -0.26 -0.26 1
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Discussion

Improvements:

Consumption and the real interest rate are more volatile.

The real interest rate is no longer strongly procyclical and much more
volatile.

Deterioration:

Output is not volatile enough.

Without capital, consumption is as cyclical as output.

Without capital, hours are countercyclical.
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